Conditional Statement

Also known as the *if-then* statement.

Two parts:

- 1. Hypothesis
- 2. Conclusion

If hypothesis then conclusion

Example:

If it is raining then water is falling from the sky.

Hypothesis: it is raining

<u>Conclusion</u>: water is falling from the sky

Example - pg 68, Check Understanding 1

If
$$y - 3 = 5$$
 then $y = 8$

Hypothesis:
$$y - 3 = 5$$

Conclusion:
$$y = 8$$

Writing a conditional

- 1. Break statement into two parts.
- 2. Determine subject of 1st part, turn into general reference
- 3. First part becomes the hypothesis
- 4. Second part becomes the conclusion

Example - pg 71, #12

All obtuse angles have measure greater than 90.

1st part: all obtuse angles

- → subject is obtuse angles
- \rightarrow an angle is an obtuse angle

 2^{nd} part: have a measure greater than 90

If an angle is an obtuse angle then it has a measure greater than 90

Truth value of a conditional

Either true or false

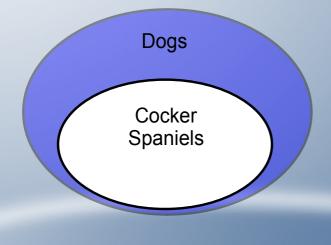
The answer to the question "is the conditional true?"

Example - pg 72, #18

If you play a sport with a ball and a bat then you are playing baseball.

Counter-example:

Think of a sport that uses a ball and bat but isn't baseball...

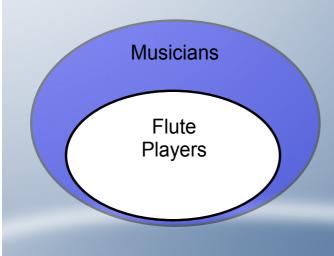

Softball or Cricket

Venn Diagrams

Way to visualize a conditional

Hypothesis is the inner circle

Conclusion is the outer circle



If something is a cocker spaniel, then it is a dog.

Example – pg 72, #20

Make a Venn diagram for this conditional:

If you play the flute then you are a musician.

Converse of a conditional

Swap the hypothesis and conclusion.

Conclusion may not be true

Always check truth value of both

Example - pg 72, #28

Conditional:

If a point is in the 1st quadrant then its coordinates are positive.

Converse:

If a point's coordinates are positive then it is in the 1st quadrant.

<u>Truth values</u>:

Conditional: true

Converse: true

Example

Conditional:

If it is raining then water is falling from the sky.

Converse:

If water is falling from the sky then it is raining.

Truth values:

Conditional: true

Converse: false (counter-example: spraying water from a hose)

Symbols

 $p \rightarrow q$ means if p then q

Often see:

Let p: The point is in the 1st quadrant

Let q: The point's coordinates are positive

 $p \rightarrow q$ (the conditional)

 $q \rightarrow p$ (the converse)

Postulates as conditionals

First state Postulate 1-2 as a statement, then as a conditional:

Statement:

Two intersecting lines meet in exactly one point.

Conditional:

If two lines intersect then they meet in exactly one point.